

JEE (Main)-2024 : Phase-1 (29-01-2024)-Morning

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

- A body of man 100 kg travelled 10 m before coming to rest. If μ = 0.4, work done against friction is (motion is happening on horizontal surface, take g = 10 m/s²)
 - (1) 4500 J (2) 5000 J
 - (3) 4200 J (4) 4000 J

Answer (4)

- Sol. $\frac{v^2}{2a} = s$ (a = µg) $v^2 = 2 \times µg s$ $v^2 = 2 \times (.4) \times 10 \times 10$ $v^2 = 80$ $w_r = \Delta k$ $= -\frac{1}{2} \times 100 \times 80$ $w_r = -4000$
- If an object is having same weight at same distance above and below the surface of earth, find its distance from surface of earth.

(1)
$$\frac{R}{2}$$
 (2) $(\sqrt{5}-1)\frac{R}{2}$
(3) $(\sqrt{3}-1)\frac{R}{2}$ (4) $(\sqrt{5}-1)R$

Answer (2)

Sol.
$$\frac{GMm}{(R+x)^2} = \frac{GMm(R-x)}{R^3}$$
$$\Rightarrow R^3 = (R+x)^2 (R-x)$$
$$\Rightarrow R^3 = (R^2 - x^2) (R+x)$$
$$\Rightarrow x^2 + Rx - R^2 = 0$$
$$\therefore x = \frac{-R \pm \sqrt{R+4R^2}}{2}$$
$$x = \frac{(\sqrt{5}-1)}{2}R$$

3. Consider the two statements :

Statement-1 : A capillary tube is first dipped in hot water and then dipped in cold water. The rise is higher in hot water.

Statement-2 : Capillary tube is first dipped in cold water and then dipped in hot water. The rise is higher in cold water.

- (1) Statement-1 is true and statement-2 is false
- (2) Statement-1 is false and statement-2 is true
- (3) Both statements are true
- (4) Both statements are false

Answer (2)

Sol.
$$h = \frac{2S\cos\theta}{\rho g R}$$

as Tî. S↓

The correct answer is Option (2).

If a particle starting from rest having constant acceleration covers distance S₁ in first (p − 1) seconds and S₂ in first p seconds, then determine time for which displacement is S₁ + S₂

(1)
$$\sqrt{2p^2 + 1 - 2p}$$

(2) $\sqrt{2p^2 + 1 + 2p}$
(3) $\sqrt{(p-1)^2 - p}$
(4) $2p$

Answer (1)

Sol.
$$S_1 = \frac{1}{2} \partial (p - 1)^2$$

 $S_2 = \frac{1}{2} \partial p^2$
 $S_1 + S_2 = \frac{1}{2} \partial \left[(p - 1)^2 + p^2 \right] = \frac{1}{2} \partial t^2$
 $t = \sqrt{2p^2 + 1 - 2p}$

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

- de-Broglie wavelength of a proton and an electron is same. The ratio of kinetic energy of electron to that of proton is
 - (1) 1 (2) 1835
 - (3) $\frac{1}{1957}$ (4) 933.5

Answer (2)

Sol.
$$\frac{h}{p_1} = \frac{h}{p_2}$$

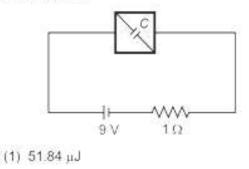
 $\Rightarrow \sqrt{2m_1k_1} = \sqrt{2m_2k_2}$
 $\Rightarrow \frac{k_2}{k_1} = \frac{m_1}{m_2} = 1835$

- If ratio of centripetal acceleration of two particles moving on the same path is 3 : 4. Find the ratio of their tangential velocities.
 - (1) 2:√3
 - (2) √3:2
 - (3) √3:1
 - (4) \sqrt{2}:1

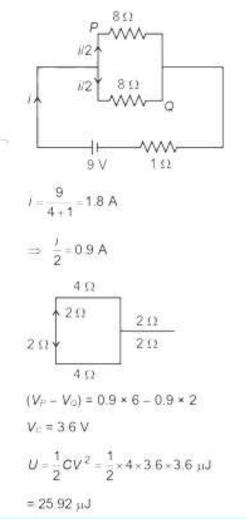
Answer (2)

Sol.
$$a_c = \frac{v^2}{r}, \ \frac{(a_c)_1}{(a_c)_2} = \left(\frac{v_1}{v_2}\right)^2$$
$$\frac{3}{4} = \left(\frac{v_1}{v_2}\right)^2 \longrightarrow \frac{v_1}{v_2} = \sqrt{3} \cdot 2$$

 A capacitor having capacitance of 100 µF is charged with a potential difference of 12 V is connected to an inductor of inductance 10 mH. Find the maximum current through the inductor.

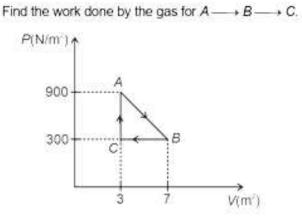

(1)	2 A	(2)	1.6 A	
(3)	2.4 A	(4)	12A	

Answer (4)


Sol.
$$I = Q_{0,0}$$

$$= \frac{CV}{\sqrt{LC}} = V \sqrt{\frac{C}{L}}$$
$$= 12 \sqrt{\frac{100 \times 10^{-6}}{10 \times 10^{-3}}}$$
$$= 1.2 \text{ A}$$

 A square loop of resistance 16 Ω is connected with battery of 9 V and internal resistance of 1 Ω. In steady state, find energy stored in capacitor of capacity C = 4 μF as shown (at steady state current divides symmetrically)


- (2) 12.96 nJ
- (3) 25.92 µJ
- (4) 103.68 µJ
- Answer (3)
- Sol. Equivalent circuit

entors

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

9. A gas undergoes a cyclic process ABCA as shown.

- (1) 1800 J
- (2) 1200 J
- (3) 3600 J
- (4) 600 J

Answer (2)

Sol. Work = Area

$$\Rightarrow W = \frac{1}{2} \times 600 \times 4$$
$$= 1200 \text{ J}$$

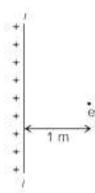
- If a biconvex lens of material of refractive index 1.5 has focal length 20 cm in air, then its focal length when it is submerged in a medium of refractive index 1.6 is
 - (1) -160 cm
 - (2) 160 cm
 - (3) 1.6 cm
 - (4) 16 cm

Answer (1)

Sol.
$$\frac{1}{20} = (1.5 - 1) \left(\frac{2}{R}\right)$$
$$R = 20 \text{ cm}$$
$$\frac{1}{f'} = \left(\frac{1.5}{1.6} - 1\right) \left(\frac{2}{R}\right)$$
$$= \frac{-1}{16} \times \frac{2}{20}$$
$$f' = -160 \text{ cm}$$

- If electric current passing through a conductor varies with time as *I* = *I*₀ + β*t*, where *I*₀ = 20 A, β = 3 A/s, then find charge flow through conductor in first 10 sec.
 - (1) 400 C (2) 500 C
 - (3) 200 C (4) 350 C

Answer (4)


Sol.
$$\Rightarrow d = \int l.dt = \int_{0}^{10} (20 + 3t)dt$$

= $(20t)_{0}^{10} + 3\left(\frac{t^{2}}{2}\right)_{0}^{10} = 350 \text{ C}$

 Consider a series of steps as shown. A ball is thrown from O. Find the minimum speed of directly jump to 5th step.

$$0 = 0.5 \text{ m}$$
(1) $5(\sqrt{2} + 1) \text{ m/s}$
(2) $5\sqrt{2} \text{ m/s}$
(3) $5\sqrt{\sqrt{2} + 1} \text{ m/s}$
(4) $6\sqrt{\sqrt{3} + 1} \text{ m/s}$

Answer (3)

Sol.
$$y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$$

(2.5, 2.5) must lie on this
 $\Rightarrow 1 = \tan \theta - \frac{g \times 2.5}{2v^2 \cos^2 \theta}$
 $\Rightarrow \frac{25}{2v^2 \cos^2 \theta} = \tan \theta - 1$
 $\Rightarrow v^2 = \frac{25}{2} \left\{ \frac{1 + \tan^2 \theta}{\tan \theta - 1} \right\}$
 $\Rightarrow v_{min} = 5\sqrt{\sqrt{2} + 1}$
[Happens when $\tan \theta = \sqrt{2} + 1$

(mass of electron 9 × 10⁻³¹ kg, permittivity of free space $\epsilon_0 = 9 \times 10^{-12} \text{ C}^2/\text{Nm}^2$)

(1) 4.05 × 10-22 C/m2

ducation

- (2) 8.10 × 10-22 C/m2
- (3) 4.05 × 10²⁴ C/m²
- (4) 2.02 × 10-20 C/m²

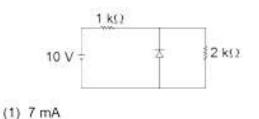
Answer (1)

Sol. For maximum value of σ, initially, electron must move away from plate.

$$ut + \frac{1}{2}at^{2} = s$$

$$t = 1 \quad u = 1 \text{ m/s} \quad s = -1 \text{ m}$$

$$1 \times 1 - \frac{1}{2}a \times 1^{2} = -1$$


$$\Rightarrow \quad a = 4 \text{ m/s}^{2}$$

$$\frac{qE}{m} = 4$$

$$\frac{q\sigma}{2v_{0}m} = 4$$

$$\sigma = \frac{4 \times 2 \times 9 \times 10^{-12} \times 9 \times 10^{-31}}{1.6 \times 10^{-19}}$$
$$= \frac{8 \times 81}{1.6} \times 10^{-24}$$
$$= 4.05 \times 10^{-22} \text{ C/m}^2$$

 In the voltage regulator circuit shown below, the reverse breakdown voltage of zener diode is 3 V. Find the current through zener diode.

- (2) 1.5 mA
- (3) 5.5 mA
- (4) 10 mA

Sol.
$$i_{\text{battery}} = \frac{10-3}{1000} = 7 \text{ mA}$$

$$\frac{1}{2k\Omega} = \frac{3}{2000} = 1.5 \text{ mA}$$

= 5.5 mA

 Consider the circuit shown. Galvanometer resistance is 10 Ω and current through galvanometer is 3 mA. Find the resistance of shunt.

10⁻³ Ω

- (2) $7.5 \times 10^{-3} \Omega$
- (3) 6.75 × 10⁻³ Ω
- (4) 3.75 × 10⁻³ Ω

Answer (4)

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

Sol. Since *G* and *S* are in parallel $\Rightarrow V_G = V_S$ $\Rightarrow 3 \text{ mA} \times 10 = 8 \text{ A} \times R_S$ $\Rightarrow R_S = 3.75 \text{ m }\Omega$ **16.** A particle executing simple harmonic motion along x-axis, with amplitude *A*, about origin. If ratio of kinetic energy and total energy at $x = \frac{A}{3}$ is (1) $\frac{8}{9}$ (2) $\frac{7}{8}$ (3) $\frac{1}{9}$

(4)
$$\frac{1}{8}$$

Answer (1)

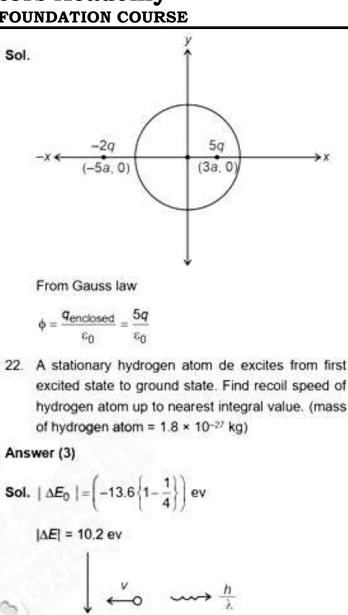
Sol.
$$KE = \frac{1}{2} m_{\odot^2} (A^2 - n^2)$$

 $TE = \frac{1}{2} m_{\odot^2} A^2$
 $\frac{KE}{TE} = \frac{A^2 - n^2}{A^2} = \frac{1 - \frac{1}{9}}{1} =$
17.

- 18
- 19.
- 20.

SECTION - B

8


9

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

 A solid sphere of radius 4a with centre at origin. Two charge, -2q at (-5a, 0) and 5q at (3a, 0) is placed. Flux through sphere is xq/(x). Find x

Answer (5)

<u>Education Mentors</u> : JEE/NEET/12th /11th/10th/9th C.B.S.E./M.P. Board <u>Address:</u>Near BSNL Office, Ajaygardh Road Panna(M.P.) <u>Contact</u>:07732-250271(0); 9713095710(M)

$$\lambda = \frac{12400}{10.2} \times 10^{-10} \text{ m}$$

$$\rho = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34} \times 10.2}{12400 \times 10^{-10}}$$

$$mv = \frac{n}{\lambda}$$

12

$$v = \frac{6.63 \times 10.2 \times 10^{-34}}{12400 \times 10^{-10}}$$
$$v = \frac{6.63 \times 10.2}{12400 \times 1.8} \times 10^{3}$$
$$= \frac{6.63 \times 102}{0.02} = 3.02$$

Cducation entors

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

 In a container, 1 g of hydrogen and 1 g of oxygen are taken. Find the ratio of hydrogen pressure to oxygen pressure.

Answer (16)

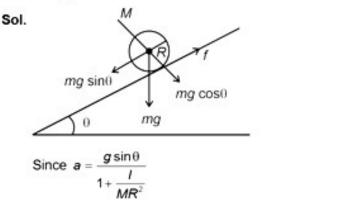
- Sol. PV = nRT
 - $\Rightarrow P \propto n$

$$\Rightarrow$$
 Ratio = $\frac{32}{2}$ = 16

24. In a convex mirror having radius of curvature 30 cm the height of image is half the object height. What will be the object (in cm) distance?

Answer (15)

Sol. f = 15


$$m = -\frac{v}{u} = +\frac{1}{2}$$
$$v = -\frac{u}{2}$$
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$
$$\frac{2}{-u} + \frac{1}{u} = \frac{1}{f}$$
$$u = -f = -15 \text{ cm}$$

 A solid cylinder is placed gently over an incline plane of inclination 60°. The acceleration of cylinder

when it start rolling without slipping is $\frac{g}{\sqrt{x}}$, where μ

is coefficient of friction. (Take g = 10 m/s2)

Answer (3)

$$\Rightarrow a = \frac{g \times \frac{\sqrt{3}}{2}}{1 + \frac{1}{2}} = \frac{g \frac{\sqrt{3}}{2}}{\frac{3}{2}}$$
$$\Rightarrow a = \frac{g}{\sqrt{3}}$$

26. Voltage and resistance for a resistor are measured as $V = 200 \pm 5$ volts and $R = 20 \pm 0.2 \Omega$. The percentage error in current $I = \frac{V}{R}$ is x. Find the value of 10x

Answer (35)

Sol. % error =
$$\left(\frac{dV}{V} + \frac{dR}{R}\right) \times 100$$

= $\left(\frac{5}{200} + \frac{0.2}{20}\right) \times 100$
= 3.5

27. Potential energy function corresponding to a conservative force is given as $U(x,y,z) = \frac{3x^2}{2} + 5y + 6z$, then the force at *x* = 6 is

pN. The value of p upto its nearest integral value is

Answer (20)

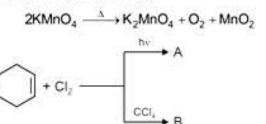
Sol. $F_x = \frac{-dv}{dx}$ $\vec{F} = -3x\hat{i} - 5\hat{j} - 6\hat{k}$ $|\vec{F}|_{x=6} = \sqrt{18^2 + 5^2 + 6^2}$ $= \sqrt{324 + 25 + 36}$ $= \sqrt{385}$ = 19.62 N28. 29. 30.

CHEMISTRY

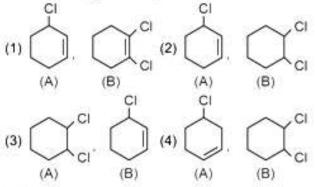
SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

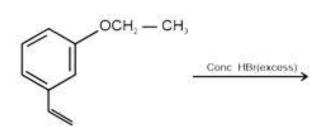

ducation

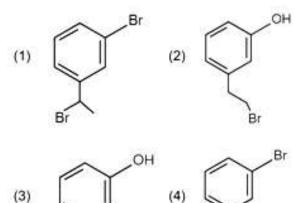
- Which of the following pair will be formed by the decomposition of KMnO₄?
 - (1) KMnO₄, MnO₂
 (2) K₂MnO₄, MnO₂
 - (3) K₂MnO₄, H₂O (4) MnO₂, H₂O

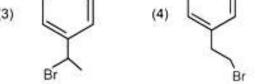

Answer (2)

2.

Sol. KMnO₄ decomposes upon heating at 513 K and forms K₂MnO₄ and MnO₂.

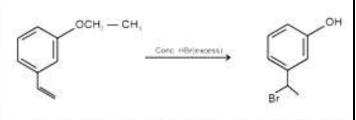


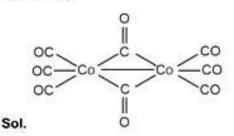

In the following reactions, find the product A and B?



Answer (2)

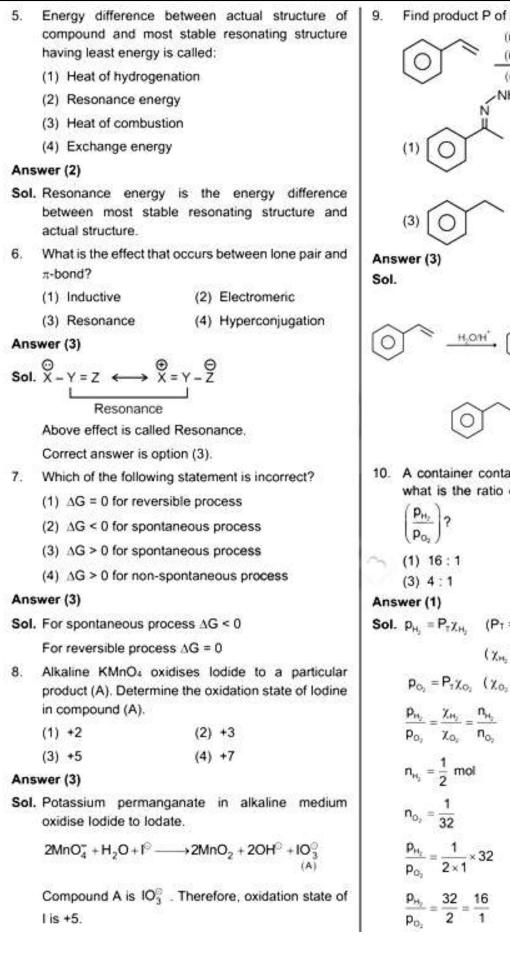
- Sol. In presence of light allylic substitution occur.
 - In presence of CCl₄, addition reaction will occur.
- The major product formed in the following reaction is :



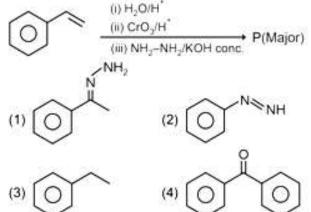

Answer (3)

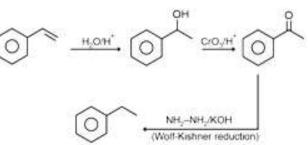
Sol. HBr adds to alkene in accordance with Markovnikov's rule

- 4. Which of the following coordination compounds has bridging carbonyl ligand?
 - (1) [Mn₂(CO)₁₀]
 - (2) [Co2(CO)8]
 - (3) [Cr(CO)6]
 - (4) [Fe(CO)5]


Answer (2)

From structure it is clear [Co₂(CO)₈] has bridging carbonyl ligand.


ducation entors


Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

Education Mentors : JEE/NEET/12th /11th/10th/9th C.B.S.E./M.P. Board Address: Near BSNL Office, Ajaygardh Road Panna(M.P.) Contact: 07732-250271(0); 9713095710(M)

Find product P of the following reaction.

 A container contains 1 g H₂ gas and 1 g O₂ gas, what is the ratio of partial pressure of H₂ and O₂

$$\begin{pmatrix} \frac{P_{H_2}}{P_{O_2}} \end{pmatrix}?$$
(1) 16:1
(2) 8:1
(3) 4:1
(4) 1:1

Sol. $p_{H_1} = P_T \chi_{H_2}$ (P_T = total pressure)

(χ_H = mole fraction of H₂)

$$p_{O_2} = P_T \chi_{O_2}$$
 (χ_{O_2} = mole fraction of O_2)

11. Match the following.

	Column I (Ores)		Column II (Formula)
(A)	Fluorspar	(p)	Al ₂ O ₃ .2H ₂ O
(B)	Cryolite	(q)	CaF ₂
(C)	Bauxite	(r)	MgCO3.CaCO3
(D)	Dolomite	(s)	Na ₃ [AlF ₆]

- (1) (A)-(s); (B)-(q); (C)-(r); D-(p)
- (2) (A)-(q); (B)-(s); (C)-(p); D-(r)
- (3) (A)-(p); (B)-(q); (C)-(s); D-(r)
- (4) (A)-(q); (B)-(s); (C)-(r); D-(p)

Answer (2)

- Sol. (A) Fluorspar CaF2
 - (B) Cryolite - Nas[AlFe]
 - Al2O3.2H2O (C) Bauxite
 - (D) Dolomite MgCO₃.CaCO₃
- 12. Which of the following element(s) is/are confirmed by appearance of blood red colour with FeCl3 in Lassaigne's test?
 - (1) Presence of S only (2) Presence of N & S
 - (3) Presence of N only (4) Presence of P only

Answer (2)

Sol. Na + C + N + S → NaSCN

 $Fe^{3+} + SCN^{-} \longrightarrow [Fe(SCN)]$

13. Statement 1 : Electronegativity of group 14 elements decreases from Si to Pb.

Statement 2 : Group 14 has metals, metalloids and non-metals.

- (1) Both Statements 1 and 2 are correct
- (2) Both Statements 1 and 2 are incorrect
- (3) Statement 1 is correct and Statement 2 is incorrect
- (4) Statement 1 is incorrect and Statement 2 is correct

Answer (4)

- Sol. Electronegativity generally decreases as we move down the group but Pb has higher electronegativity than Sn.
 - C ⇒ non-metal

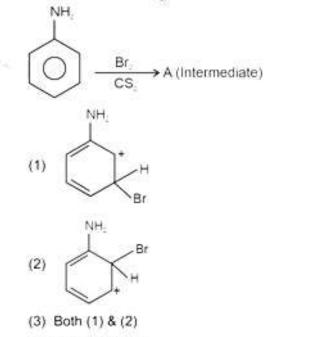
Si and Ge
metalloids

Sn and Pb ⇒ metals

E.N. of Sn = 1.8, Pb = 1.9

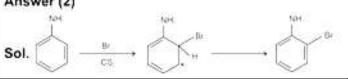
- 14. Hydrolysis of proteins gives which type of aminc acid?
 - (1) u-Amino acid (2) B-Amino acid
 - (3) y-Amino acid (4) δ-Amino acid

Answer (1)


- Sol. Proteins on hydrolysis gives a-amino acid because a-amino acids are building block of proteins. It is also fact that amino acids contain both -NH2 and -COOH group.
- 15. Statement 1 : Ionisation energy decreases in a period.

Statement 2 : In a period Z dominates over screening effect

- (1) Both statements 1 and 2 are correct
- (2) Both statements 1 and 2 are incorrect
- (3) Statement 1 is correct and statement 2 is incorrect
- (4) Statement 1 is incorrect but statement 2 is correct


Answer (4)

- Sol. lonisation enthalpy increases in a period. Z dominates over screening effect (a) in a period as Zett. increases.
- 16. Consider the following reaction

(4) None of these

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

17. Match the following

	Column I (Complexes)		Column II (Metals)
A.	Vitamin B12	(p)	Ti
В.	Wilkinson catalyst	(q)	Co
C.	Ziegler-Natta catalyst	(r) .	Fe
D.	Haemoglobin	(s)	Rh

(1) A(q), B(s), C(p), D(r) (2) A(s), B(q), C(r), D(p)

(3) A(q), B(p), C(r), D(s) (4) A(q), B(r), C(p), D(s) Answer (1)

Sol. A. Vitamin B12 - Co

- B. Wilkinson catalyst Rh([Rh(PPh₃)₃ Cl])
- C. Ziegler-Natta catalyst Ti (TiCl₄ + Al(C₂H₅)₃)
- D. Haemoglobin Fe

X is a chromium compound, what is the oxidation state of chromium in compound 'X'.

- (1) +6 (2) +3
- (3) +5 (4) +10

Answer (1)

Sol.
$$K_2Cr_2O_7 * H_2O_2 + H_2SO_4 \rightarrow CrO_5 + K_2SO_4 + H_2O_4$$

compound 'X' is \Rightarrow CrO₅

Oxidation state of chromium = +6.

19. $xCl_2 + yOH^- \longrightarrow zCI^- + pCIO^-$

Balance the above reaction and find out values of x, y, z and p.

- (1) x = 1, y = 2, z = 2, p = 1
 (2) x = y = z = p = 1
 (3) x = 1, y = 1, z = 2, p = 1
- (4) x = 1, y = 2, z = 1, p = 1

Answer (4)

After balancing change in oxidation state.

Next, balance 'O' atoms,

 $2CI_2 + 4OH^{--} \longrightarrow 2CI^{--} + 2CIO^{--} + 2H_2O$

Simplifying to get simplest ratios,

$$CI_2 + 2OH^- \longrightarrow CI^- + CIO^- + H_2O$$

 For Rb(37) which of the following set of quantum numbers are correct for valence electron?

(1) 5, 0, 0,
$$+\frac{1}{2}$$

(2) 5, 0, 1, $-\frac{1}{2}$
(3) 5, 0, 1, $+\frac{1}{2}$
(4) 5, 1, 1, $+\frac{1}{2}$

Answer (1)

Sol. ${}_{37}\text{Rb} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1$ Last electron enters in 5s subshell

Value of quantum numbers

$$n = 5, l = 0, m = 0, s = \pm \frac{1}{2}$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

 Calculate the molarity of a solution having density = 1.5 g/mL %(w/w) of solute is 36% and molecular weight of solute is 36 g/mol.

Answer (15)

Sol. Assume mass of solution

Mass of solute = 36 gm

Moles of solute = 1

Molarity =
$$\frac{1 \times 1000}{\left(\frac{100}{1.5}\right)} = \frac{1000}{100} \times 1.5 = 15$$

22. Given $K_{net} = \frac{K_1 K_2}{K_3}$ when $E_{n_1} = 40 \text{ kJ/mol}$

E_a = 50 kJ/mol, E_a = 60 kJ/mol.

Calculate value of (E_a)net in kJ/mol

Answer (30)

Sol.
$$(E_a)_{net} = E_{a_1} + E_{a_2} - E_{a_3}$$

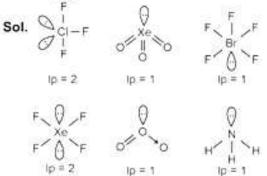
= 30 kJ/mol

NO.

Cducation entors

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

Sol. Fehling solution test can be given by aldehyde except aromatic aldehyde.


can't give Fehling solution test.

NO₂ other all three given can give Fehling solution test.

24. How many of the following compounds have one lone pair in central atom?

CIF3, XeO3, BrF5, XeF4, O3, NH3

Answer (4)

25. How many of the following species have bond order = 1 and are paramagnetic as well?

Answer (1)

Sol. B₂ have bond order equal to 1 and also paramagnetic.

He₂²⁺; O₂²⁺; Ne₂²⁺; F₂; H₂ have bond order equal to 1 but are diamagnetic.

O2* have bond order equal to 3.

26. How many of the following compound contain sulphur atom?

Pyrrole, Furan, Thiophene, Cysteine, Tyrosine, Pyridine

Answer (2)

Sol.

 Through a ZnSO₄ solution, 0.015 A current was passed for 15 minutes. What is the mass of Zn deposited? (in mg)

(Atomic weight of Zn = 65.4)

Answer (5)

Sol. Charge passed = It

Moles of electrons passed =
$$\frac{0.015 \times 15 \times 60}{96500}$$

Moles of Zn deposited =
$$\frac{1}{2} \times \frac{0.015 \times 15 \times 60}{96500}$$

= 0.00007

Mass of Zn deposited = 0.00007 × 65.4 g = 4.58 mg

 Osmotic pressure at 273 K is 7 × 10⁵ Pa, then what will be the value of x, if its osmotic pressure at 283 K is x × 10⁴ Pa?

Answer (73)

Sol.
$$\pi_1 = iCRT_1$$

 $\pi_2 = iCRT_2$
 $\frac{\pi_1}{T_1} = \frac{\pi_2}{T_2}$
 $\pi_2 = \frac{\pi_1 \times T_2}{T_1}$
 $= \frac{7 \times 10^5 \times 283}{273}$
 $= 7.256 \times 10^5 Pa$
 $= 72.56 \times 10^4 Pa$
 $\pi_2 = x \times 10^4$
 $\therefore x = 72.56 = 73$

 K_p for the given reaction is (36 × 10⁻² atm⁻¹). Find out K_c (M⁻¹) (nearest integer).

$$(2NO_2 \rightleftharpoons N_2O_4)$$

(T = 300 K)

Answer (9)

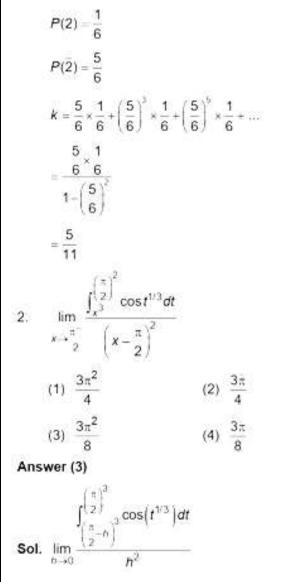
Sol. K_p = K_c(RT)¹ cog 36 × 10⁻² = K_c(0.0821 × 300)⁻¹

30. ??

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.


Choose the correct answer :

 Let a die rolled till 2 is obtained. The probability that 2 obtained on even numbered toss is equal to

5	(2)	5
11	(2)	6
1	(4)	6
	5 11 1 11	1.1.0

Answer (1)

Sol. P(2 obtained on even numbered toss) = k(let)

$$= \lim_{h \to 0} \frac{0 + 3\left(\frac{\pi}{2} - h\right)^2 \cos\left(\frac{\pi}{2} - h\right)}{2h}$$
$$= \lim_{h \to 0} \frac{3\left(\frac{\pi}{2} - h\right)^2 \sin h}{2h}$$
$$= \frac{3\pi^2}{8}$$

3. Consider the equation $4\sqrt{2}x^3 - 3\sqrt{2}x - 1 = 0$.

Statement 1: Solution of this equation is $\cos \frac{\pi}{12}$.

Statement 2: This equation has only one real solution.

- (1) Both statement 1 and statement 2 are true
- (2) Statement 1 is true but statement 2 is false
- (3) Statement 1 is false but statement 2 is true
- (4) Both statement 1 and statement 2 are false

Answer (2)

sol.
$$12x = \pi$$

 $\Rightarrow 3x = \frac{\pi}{4}$
 $\cos 3x = \frac{1}{\sqrt{2}}$
 $\Rightarrow 4\cos^3 x - 3\cos x = \frac{1}{\sqrt{2}}$
 $\Rightarrow 4\sqrt{2}\cos^3 x - 3\sqrt{2}\cos x - 1 = 0$
 $x = \frac{\pi}{12}$ is the solution of above equation.
 \therefore Statement 1 is true
 $f(x) = 4\sqrt{2x^3} - 3\sqrt{2x} - 1$
 $f'(x) = 12\sqrt{2x^2} - 3\sqrt{2} = 0$
 $\Rightarrow x = \pm \frac{1}{2}$
 $f\left(-\frac{1}{2}\right) = -\frac{1}{\sqrt{2}} + \frac{3}{\sqrt{2}} - 1 = \sqrt{2} - 1 > 0$
 $f(0) = -1 < 0$
 \therefore one root lies in $\left(-\frac{1}{2}, 0\right)$, one root is $\cos \frac{\pi}{12}$ which
is positive. As the coefficients are real, therefore all
the roots must be real.

: Statement 2 is false.

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

		JEE/NEEI/NISE
4.	If 2A ³ = 2 ²¹	6
	[1 0 0]	
	and $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix}$ then α	is (if $\alpha, \beta \in I$)
	Ο β α	
		2) 3
) 17
An	nswer (1)	<
Sol	bl. $ 2A = 2^7$	
	$8 A = 2^{7}$	
	$ A = 2^4$	
	Now $ A = \alpha^2 - \beta^2 = 2^4$	
	$\alpha^2 = 16 + \beta^2$	
	$\alpha^2 - \beta^2 = 16$	
	$(\alpha - \beta) (\alpha + \beta) = 16$	
	$\Rightarrow \alpha + \beta = 8 \text{ and}$	
	$\alpha - \beta = 2$	
	$\Rightarrow \alpha = 5$, and $\beta = 3$	
5.	In a 64 terms GP if sum of to	otal terms is seven times
	sum of odd terms, then cor	
	(1) 3 (2	2) 4
	(3) 5 (4) 6
Ans	nswer (4)	
Sol	ol. a, ar, ar ² ,ar ⁶³	
	$a + ar + ar^2 + \dots + ar^{63} = 7$ [a	a + ar ² + ar ⁴ + + ar ⁶²]
	$\frac{a(1-r^{64})}{(1-r)} = 7 \frac{a(1-r^{64})}{(1-r^2)}$	
	$(1-r)$ $(1-r^2)$	
	1 + r = 7	
	r = 6	
6.	If $\frac{dy}{dx} - \left(\frac{\sin 2x}{1 + \cos^2 x}\right)y = \frac{s}{1 + \cos^2 x}$	$\frac{\ln x}{\cos^2 x}$ and $y(0) = 0$ then
	$y\left(\frac{\pi}{2}\right)$ is	
	(1) -1 (2	2) 1
) 2
An	nswer (2)	
Sel	dy (sin2x), sin	x
30	$\int \frac{dy}{dx} - \left(\frac{\sin 2x}{1 + \cos^2 x}\right) y = \frac{\sin 2x}{1 + \cos^2 x}$	s ² x
	$IF = e^{-\int_{1+\cos^2 x}^{\sin^2 x dx}}$	
	$=e^{\ln(1+\cos^2 x)}=(1+\cos^2 x)$	
	So, $y(1 + \cos^2 x) = \int \frac{\sin^2 x}{(1 + \cos^2 x)} dx$	$\frac{x}{s^2 x} \cdot (1 + \cos^2 x) dx$
	$y(1+\cos^2 x)=-\cos x+c$	

y(0) = 00 = -1 + c⇒ c=1 $y = \frac{1 - \cos x}{1 + \cos^2 x}$ Now, $y\left(\frac{\pi}{2}\right) = 1$ 4cosθ + 5sinθ = 1 Then find tan θ , where $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. (1) $\frac{10 - \sqrt{10}}{6}$ (2) $\frac{10 - \sqrt{10}}{12}$

(3)
$$\frac{\sqrt{10} - 10}{6}$$
 (4) $\frac{\sqrt{10} - 10}{12}$

An

$$6 12$$
Answer (4)
Sol. 16 cos²0 + 25sin²0 + 40sin0 cos0 = 1
$$16 + 9sin20 + 20sin20 = 1$$

$$16 + 9\left(\frac{1-\cos 2\theta}{2}\right) + 20sin20 = 1$$

$$\frac{-9}{2}cos20 + 20sin20 = \frac{-39}{2}$$

$$-9cos20 + 40sin20 = -39$$

$$-9\left(\frac{1-\tan^{2}\theta}{1+\tan^{2}\theta}\right) + 40\left(\frac{2\tan\theta}{1+\tan^{2}\theta}\right) = -39$$

$$48\tan^{2}\theta + 80\tan\theta + 30 = 0$$

$$24\tan^{2}\theta + 40\tan\theta + 15 = 0$$

$$\tan\theta = \frac{-40 \pm \sqrt{(40)^{2} - 15 \times 24 \times 4}}{2 \times 24}$$

$$\tan\theta = \frac{-40 \pm \sqrt{160}}{2 \times 24}$$

$$= \frac{-10 \pm \sqrt{10}}{12}$$

 $\Rightarrow \quad \tan \theta = \frac{\sqrt{10} - 10}{12}, \qquad \tan \theta = \frac{-\sqrt{10} - 10}{12}$

So $\tan \theta = -\frac{\sqrt{10}-10}{12}$ will be rejected

 $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Option (4) is correct.

as

entors

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

In an increasing arithmetic progression a1, a2,a. if as = 2 and product of a1, a5 and a4 is greatest, then the value of d is equal to (1) 1.6 (2) 1.8 (3) 0.6 (4) 2.0 Answer (1) Sol. First term = a Common difference = dGiven: a + 5d = 2 ... (1) Product (P) = $(a_1a_5a_4) = a(a + 4d)(a + 3d)$ Using (1) P = (2 - 5d)(2 - d)(2 - 2d) $\Rightarrow \frac{dP}{dd} = (2-5d)(2-d)(-2) + (2-5d)(2-2d)(-1)$ (-5)(2-d)(2-2d)= -2[(d-2)(5d-2) + (d-1)(5d-2) + 5(d-1)(d)]-2)] $= -2 [5d^{2} + 4 - 12d + 5d^{2} + 2 - 7d + 5d^{2} + 10 - 15]$ ď = - 2 [15d² - 34d + 16] $\Rightarrow d = \frac{8}{5} \text{ or } \frac{2}{2}$ at $\left(\frac{8}{5}\right)$, product attains maxima $\Rightarrow d = 1.6$ If relation R : (a, b) R(c, d) is only if ad - bc is 9. divisible by 5 (a, b, c, $d \in Z$) then R is (1) Reflexive (2) Symmetric, Reflexive but not Transitive (3) Reflexive, Transitive but not symmetric (4) Equivalence relation Answer (2) Sol. Reflexive : for (a, b) R (a, b) ⇒ ab – ab = 0 is divisible by 5. So (a, b) R(a, b) ∀ a, b ∈ Z ... R is reflexive Symmetric : For (a, b) R(c, d) If ad - bc is divisible by 5. Then bc - ad is also divisible by 5. \Rightarrow (c, d) R(a, b) \forall a, b, c, d \in Z . R is symmetric Transitive : If $(a, b) R(c, d) \Rightarrow ad - bc$ divisible by 5 and (c, d) R (e, f) \Rightarrow cf – de divisible by 5

ad - bc = 5k k1 and k2 are integers $cf - de = 5k_2$ afd - bcf = 5k.f $bcf - bde = 5k_2b$ $afd - bde = 5(k_1f + k_2b)$ $d(af - be) = 5(k_1f + k_2b)$ ⇒ af – be is not divisible by 5 for every a, b, c, d, e, f ∈ Z. .: R is not transitive For e.g., take a = 1, b = 2, c = 5, d = 5, e = 2, f = 2 $2+2x, x \in (-1,0)$ 10. Let $f(x) = \begin{cases} 1 - \frac{x}{3}, & x \in [0,3) \end{cases}$ $g(x) = \begin{cases} x, & x \in [0, 1) \\ -x, & x \in (-3, 0) \end{cases}$ The range of fog(x) is (1) [0, 1] (2) [-1, 1](4) (-1, 1) (3) (0, 1] Answer (3) $2+2x, x \in (-1, 0)$ **Sol.** $f(x) = \begin{cases} 1 - \frac{x}{3}, & x \in [0, 3) \end{cases}$ $g(x) = \begin{cases} x, & x \in [0, 1) \\ -x, & x \in (-3, 0) \end{cases} \implies g(x) = |x|, x \in (-3, 1)$ $f(g(x)) = \begin{cases} 2+2 \mid x \mid, & \mid x \mid \in (-1, 0) \Rightarrow x \in \phi \\ 1 - \frac{\mid x \mid}{3}, & \mid x \mid \in [0, 3) \Rightarrow x \in (-3, 1) \end{cases}$ $f(g(x)) = \begin{cases} 1 - \frac{x}{3}, & x \in [0, 1) \\ 1 + \frac{x}{2}, & x \in (-3, 0) \end{cases}$ Range of fog(x) is [0, 1] 11. If $\int_{-\infty}^{2} \left(\frac{x^2 \cos x}{1 + \pi^4} + \frac{1 + \sin^2 x}{1 + e^{\cos^2 \theta^{2/2}}} \right) dx = \frac{\pi}{4} (\pi + \alpha) - 2$ Then the value of 'a' is equal to (1) 1 (2) 2(4) 4 (3) 3 Answer (3)

Sol. Given

ducation

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x^{2} \cos x}{1 + \pi^{x}} + \frac{1 + \sin^{2} x}{1 + e^{(\cos x)^{2(2)}}} \right) dx = \frac{\pi}{4} (\pi + \alpha) - 2$$

$$\int_{0}^{\frac{\pi}{2}} \left\{ \left(\frac{x^{2} \cos x}{1 + \pi^{x}} + \frac{1 + \sin^{2} x}{1 + e^{(\cos x)^{2(2)}}} \right) + \left(\frac{x^{2} \cos x}{1 + \pi^{x}} + \frac{1 + \sin^{2} x}{1 + e^{-(\cos x)^{2(2)}}} \right) \right\} dx$$

$$= \frac{\pi}{4} (\pi + \alpha) - 2$$

$$\int_{0}^{\frac{\pi}{2}} (x^{2} \cos x dx + 1 + \sin^{2} x) dx = \frac{\pi}{4} (\pi + \alpha) - 2$$

$$\int_{0}^{\frac{\pi}{2}} x^{2} \cos x dx + \frac{5}{6} (1 + \sin^{2} x) dx = \frac{\pi}{4} (\pi + \alpha) - 2 \dots (1)$$
Let $I_{1} = \int_{0}^{\frac{\pi}{2}} (1 + \sin^{2} x) dx$

$$I_{1} = \frac{\pi}{2} + \frac{1}{2} \left[\frac{\pi}{2} + 0 \right]$$

$$I_{1} = \frac{\pi}{2} + \frac{\pi}{4}$$

$$I_{1} = \frac{\pi}{2} + \frac{\pi}{4}$$
Let $I_{2} = \int_{0}^{\frac{\pi}{2}} x^{2} \cos x dx$

$$I_{2} = \left[x^{2} (\sin x) - \int 2x \int \cos x dx \right]_{0}^{\frac{\pi}{2}}$$

$$I_{2} = \left[x^{2} (\sin x) - 2 \int x \sin x \right]_{0}^{\frac{\pi}{2}}$$

$$I_{2} = \left[x^{2} \sin x - 2 (x(-\cos x) + \int \cos x) \right]_{0}^{\frac{\pi}{2}}$$

$$I_{2} = \left[x^{2} \sin x - 2 (-x \cos x + \sin x) \right]_{0}^{\frac{\pi}{2}}$$

$$I_{2} = \left[\frac{\pi^{2}}{4} - 2 \right]$$

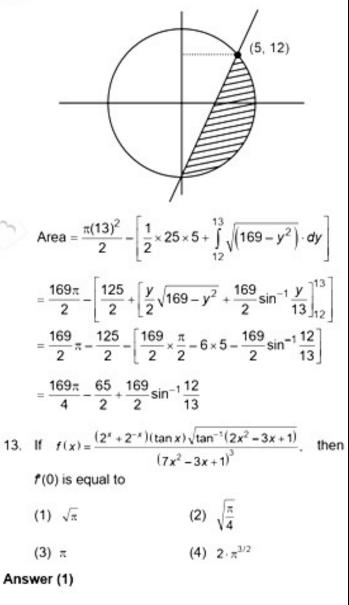
$$\therefore \quad \text{Put } I_{1} \text{ and } I_{2} \text{ in } (1)$$

$$\therefore \quad \frac{\pi^{2}}{4} - 2 + \frac{3\pi}{4}$$

$$\frac{\pi}{4}(\pi+3)-2$$

$$\therefore \alpha = 3$$

 Area under the curve x² + y² = 169 and below the line 5x - y = 13 is


(1)
$$\frac{169\pi}{4} = \frac{65}{2} + \frac{169}{2}\sin^{-1}\frac{12}{13}$$

(2) $\frac{169\pi}{4} = \frac{65}{2} + \frac{169}{2}\sin^{-1}\frac{12}{13}$

(2) $\frac{169}{4} + \frac{169}{2} - \frac{169}{2} \sin^{-1} \frac{13}{14}$ (3) $\frac{169}{4} - \frac{65}{2} + \frac{169}{2} \sin^{-1} \frac{13}{14}$

$$(4) \quad \frac{169\pi}{4} + \frac{65}{2} + \frac{169}{2}\sin^{-1}\frac{13}{14}$$

Answer (1)

Sol.

entors	III-JEE/NEEI/NISE
Sol. $f(x) = \frac{(2^x + 2^{-x})}{(2^x + 2^{-x})}$	$\frac{\tan x \sqrt{\tan^{-1}(2x^2 - 3x + 1)}}{(7x^2 - 3x + 1)^3}$
	$(7x^2 - 3x + 1)^3$
$f(x) = (2^{x} + 2^{-x}).t$	an $x.\sqrt{\tan^{-1}(2x^2-3x+1)}.(7x^2-3x+1)^{-3}$
f'(x) = (2' + 2'') sec ²	$x\sqrt{\tan^{-1}(2x^2-3x+1)}(7x^2-3x+1)^{-1}+\tan x(Q(x))$
$\therefore f'(0) = 2.1 \cdot \sqrt{\frac{\pi}{4}}.$	1
$=\sqrt{\pi}$	
$14. \int \frac{(\sin x - \cos x)}{\sin x \cos^2 x} dx + \frac{1}{2} \int \frac{(\sin x - \cos x)}{\sin x \cos^2 x} dx + \frac{1}{2} \int \frac{1}$	$\frac{x)\sin^2 x}{\tan x \sin^3 x} dx \text{ is equal to}$
(1) $\frac{\ln \sin^3 x - 1}{3}$	$\frac{\cos^3 x}{1 + c}$
(2) $\frac{\ln \sin^3 x + 3}{3}$	$\frac{\cos^3 x}{ } + c$
(3) $\frac{\ln \sin^3 x - 2}{2}$	$\frac{\cos^3 x}{+ c}$
(4) $\frac{\ln \sin^3 x+4}{4}$	$\frac{\cos^3 x}{x}$ + c
Answer (2)	
Sol. $\int \frac{(\sin x - \cos x)}{\tan x (\sin^3 x + x)}$	
$\int \frac{(\sin x - \cos x)}{\sin^3 x + \cos^3 x}$	$\frac{\sin x \cos x}{\cos^3 x} dx$, put $\sin^3 x + \cos^3 x = t$
(3 sin ² x-cosx - 2	$3\cos^2x\sin x$) $dx = dt$
$\Rightarrow \frac{1}{3}\int \frac{dt}{t}$	
$=\frac{\ln t}{3}+c$	
$=\frac{\ln \sin^3 x + cc}{3}$	$\frac{ \mathbf{s}^3 \mathbf{x} }{ \mathbf{s} } + \mathbf{c}$
15.	
16.	
17.	
18.	
19.	
20.	
	SECTION - B
Numerical Value	Type Questions: This section
contains 10 Numeric	al based questions. The answer to ald be rounded-off to the nearest

ducation entors

LOTS ACAGEMY FOUNDATION COURSE
21. $\frac{{}^{11}C_1}{2} + \frac{{}^{11}C_2}{3} + \dots + \frac{{}^{11}C_9}{10} = \frac{m}{n}$
Then m + n is
Answer (2041)
Sol. $(1 + x)^{11} = {}^{11}C_0 + {}^{11}C_1x + {}^{11}C_2x^2 + \dots + {}^{11}C_{11}x^{11}$
$\int_{0}^{1} (1+x)^{11} dx = {}^{11}C_0 x + \frac{{}^{11}C_1 x^2}{2} + \frac{{}^{11}C_2 x^3}{3} + \dots$
$+\frac{{}^{11}C_9x^{10}}{10}+\frac{{}^{11}C_{10}x^{11}}{11}+\frac{{}^{11}C_{11}x^{12}}{12}\bigg]_0^1$
$\frac{(1+x)^{12}}{12}\bigg]_{0}^{1} = {}^{11}C_{0} + \frac{{}^{11}C_{1}}{2} + \frac{{}^{11}C_{2}}{3} + \dots + \frac{{}^{11}C_{9}}{10} + \frac{{}^{11}C_{10}}{11} + \frac{{}^{11}C_{11}}{12}$
$\frac{2^{12}-1}{12}-1-1-\frac{1}{12}=\frac{{}^{11}C_1}{2}+\frac{{}^{11}C_2}{3}+\ldots+\frac{{}^{11}C_{10}}{11}$
$=\frac{2^{12}-2-24}{12}$
$=\frac{2^{12}-26}{12}=\frac{4070}{12}=\frac{2035}{6}=\frac{m}{n}$
m + n = 2035 + 6 = 2041
22. Rank of the word 'GTWENTY' in dictionary is
Answer (553)
Sol. Start with
(1) $\vec{E}: \frac{6!}{2!} = 360$
(2) $\overline{GE}: \frac{5!}{2!}, \overline{GN}: \frac{5!}{2!}$
 (3) GTE: 4!, GTN: 4!, GTT: 4! (4) GTWENTY = 1
$\Rightarrow 360 + 60 + 60 + 24 + 24 + 24 + 1 = 553$
23. Curve $y = 2^x - x^2$, $y(x) \& y'(x)$ cut x-axis in $M \& N$
number of points respectively, find $M + N$.
Answer (5)
Sol. $y(x) = 2^x - x^2$
$y'(x) = 2^x \log 2 - 2x$
(x)
<i>M</i> = 3
N = 2
M + N = 5
th C.B.S.E./M.P. Board

ducation	Education Me
entors	IIT-JEE/NEET/NTSE
24. Given data	
60, 60, 44, 58, 68, α = 66.2 then find α^2	α , β , 56 has mean 58, variance + β^2
Answer (7182)	P
2010) - Contraction - Contra	
Sol. Variance $=\frac{\Sigma x^2}{n} - ($	$(\overline{x})^2$
$60^2 + 60^2 + 44^2 +$	$\frac{58^2 + 68^2 + \alpha^2 + \beta^2 + 56^2}{9}$
	8
	- (58) ² = 66.2
7200 + 1936 + 336	$\frac{4+4624+3136+\alpha^2+\beta^2}{8}$
	- 3364 = 66.2
$2532.5 + \frac{\alpha^2 + \beta^2}{8} - $	3364 = 66.2
$\alpha^2 + \beta^2 = 897.7 \times 8$	
= 7181.6	
25. If $ z + 1 = \alpha z + \beta (i$	+ 1) and $z = \frac{1}{2} - 2i$, find α + β .
Answer (3)	
Sol. $\left \frac{1}{2} - 2i + 1 \right = \alpha \left(\frac{1}{2} - 2i \right)$	$2i$) + $\beta(1+i)$
$\sqrt{\frac{9}{4}+4} = \alpha \left(\frac{1}{2}-2i\right)$	$+\beta(1+i)$
$\frac{5}{2} = \alpha \left(\frac{1}{2}\right) + \beta + i(-2)$	α + β)
$\frac{\alpha}{2} + \beta = \frac{5}{2}$	(1)
$-2\alpha + \beta = 0$	(2)
Solving (1) and (2)	
$\frac{\alpha}{2} + 2\alpha = \frac{5}{2}$	
$\frac{5}{2}\alpha = \frac{5}{2}$	
α = 1	
β = 2	
$\Rightarrow \alpha + \beta = 3$	

FOU	JNDATION COURSE
26.	If a, b, c are non-zero and b and c are non-
	collinear. $\vec{a}+5\vec{b}$ is collinear with \vec{c} and $\vec{b}+6\vec{c}$ is
	collinear with \vec{a} . If $\vec{a} + \alpha \vec{b} + \beta \vec{c} = 0$, then find $\alpha + \beta$.
Ans	swer (35)
Sol.	. ∵ ã +5b is collinear with c
	$\Rightarrow \vec{a} + 5\vec{b} = \lambda \vec{c} \qquad \dots (1)$
	\vec{b} + 6 \vec{c} is collinear with \vec{a}
	$\Rightarrow \vec{b} + 6\vec{c} = \mu \vec{a} \qquad \dots (2)$
	From (1) and (2)
	$\vec{b} + 6\vec{c} = \mu(\lambda\vec{c} - 5\vec{b})$
	$\Rightarrow (1+5\mu)\vec{b} + (6-\lambda\mu)\vec{c} = 0$
	$\because \vec{b}$ and \vec{c} are non-collinear
	\Rightarrow 1+5 μ = 0 \Rightarrow $\mu = \frac{-1}{5}$ and
	$6 - \lambda \mu = 0 \Longrightarrow \lambda \mu = 6$
	$\Rightarrow \lambda = -30$
	Now,
	$\vec{b} + 6\vec{c} = \frac{-1}{5}\vec{a}$
~	$5\vec{b} + 30\vec{c} = -\vec{a}$
	$\vec{a} + 5\vec{b} + 30\vec{c} = 0$
	$\vec{a} + \alpha \vec{b} + \beta \vec{c} = 0$
	On comparing
	$\alpha = 5, \beta = 30 \Rightarrow \alpha + \beta = 35$
27.	
28.	
29.	
30.	