

 $\frac{P_1}{P_2} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{4}{25}} = \frac{2}{5}$

Education Mentors Academy ducation entors **IIT-JEE/NEET/NTSE/FOUNDATION COURSE** 6. An object of mass 1000 kg is moving with 6 m/s. Find speed of object is mass 200 kg is added to it ? (1) 4 m/s(2) 5 m/s(3) 8 m/s(4) 6 m/sAns. (2) Sol. Linear momentum is conserved. $1000 \times 6 = 1200 (v_f)$ $v_f = 5 \text{ m/s}$. · . Two very long wire having current as shown. Find the magnetic field at point 'P' (in micro tesla). 7. 10A P 5/2cm 10A 160 Ans. $\mathbf{B} = \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{D}} \times 2$ Sol. $\mathbf{B} = \frac{2 \times 10^{-7} \times 10}{\frac{5}{2} \times 10^{-2}} \times 2$ $B = 16 \times 10^{-5}$ Tesla $B = 160 \ \mu T$ If the electron revolving in the third Bohr's orbit of hydrogen species has radius R, then what will be its 8. radius in fourth orbit in terms of R. (1) $\frac{25R}{9}$ (2) $\frac{16R}{9}$ (3) $\frac{36R}{9}$ (4) $\frac{9R}{16}$ **(B)** Ans. $\mathbf{R} = \frac{\mathrm{kn}^2}{\mathrm{Z}}$ Sol. $\frac{R}{R'} = \frac{\frac{k3^2}{Z}}{\frac{k4^2}{k4^2}}$ $\Rightarrow \frac{R}{R'} = \frac{9}{16}$ \Rightarrow R' = $\frac{16}{9}$ R

Sol.
$$e_{avg} = \frac{\Delta \phi}{\Delta t} = \frac{BA \cos \theta}{10}$$

= $4 \times 2 \times \frac{5}{2} \times \frac{\cos 60}{10} = 1$ volt

1

11. Find apparent depth of the object shown in figure ?

$$6 \text{cm} \qquad \mu = \frac{3}{2}$$

$$6 \text{cm} \qquad \mu = \frac{3}{2}$$

$$6 \text{cm} \qquad \mu = \frac{8}{5}$$

$$8 \text{object}$$

$$8 \text{obje$$

12. An EM wave is given by $E = 200 \sin [1.5 \times 10^7 t - 0.05 x] N/C$ Find the intensity of wave. $[\epsilon_0=8.85\times 10^{-12}~\text{SI units}]$ 53.1 Ans. $\mathbf{I} = \frac{1}{2} \varepsilon_0 \mathbf{E}_0^2 . \mathbf{C}_{\text{mid}}$ Sol. $\mathbf{I} = \frac{1}{2} \times 8.85 \times 10^{-12} \times [200]^2 \frac{1.5 \times 10^7}{0.05}$ $I = 53.1 \text{ W/m}^2$ 6Ω 1Ω 10V 13. 150µF 4Ω 2Ω Find charge on capacitor at steady state? (1) 200 µC (2) 300 µC (3) 400 µC (4) 500 µC Ans. (3)

Sol. 10V 0(let) $\therefore \Delta V)_{capacitor} = \left|4 - \frac{20}{3}\right| = \frac{8}{3}V$ $\therefore q = \frac{8}{3} \times 150 = \boxed{400\mu C}$

ducation entors

K	Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE				
14.	A particle performs SHM with an amplitude 4 cm. Speed of particle at mean position is 10 cm/sec. Find				
	position from mea	n where speed is 5 o	cm/sec		
	(1) 2 cm	(2) $2\sqrt{3}$ cm	(3) 0.5 cm	(4) $\sqrt{3}$ cm	
Ans.	(2)				
Sol.	$10 \text{ cm/s} = A\omega$	(i)			
	$5 \text{ cm/s} = \omega \sqrt{A^2 - x}$	x ² (ii)	using (i) and (ii)		
	$\mathbf{x} = \frac{\sqrt{3}A}{2} = 2\sqrt{3} \text{ cm}$	n			
15.	Given :				
	m = 0.08 kg				
	$s_v = 0.17$ kcal/kg-	°C			
	$\Delta T = 5^{\circ}C$				
	Find change in inte	ernal energy (in Jou	lle) of gas.		
Ans.	284				
Sol.	$\Delta U = m s_v \Delta T$				
	$\Delta U = 0.08 \times 0.17$	$\times 10^3 \times 5$			
	$\Delta U = 68 \text{ cal}$				
	$\Delta U = 284.24$ Joule	2			
16.	A gas undergoes is pressure is 10 kPa?	sothermal expansion	n from 30 dm ³ to 45 dm	³ . Find heat absorbed by gas if external	
	(1) 100 J (2) 150 J	(3) 120 J	(4) 200 J		
Ans.					
Sol.	$\Delta V = 0$				
	$\therefore \Delta Q = w$ $= nRT \ell n \left(\frac{V_2}{V_1}\right)$				
	$= \mathbf{P}_1 \mathbf{V}_1 \ \ln \left(\frac{\mathbf{V}_2}{\mathbf{V}_1} \right)$				
	$= 10 \times 10^3 \times 30 \times 10^3$	$\int n^{-3} \ln\left(\frac{3}{2}\right)$			
	= 300 × 0.4 = 120 J				
			(11th (10th (0th CD CT)		

Cer	lucation		lentors Acad SE/FOUNDATION	
17.	A banked road of rac	dius 400 m is there with	base separation between	the rails is 1.5 m, if speed of a car for
	safe turning is 12 m/	s, then find height of on	e rail w.r.t to second rail?	?
	(1) $h = 0.054 m$	(2) $h = 0.1 m$	(3) h = 0.001 m	(4) $h = 0.2 m$
Ans.	(1)			
Sol.	h N N H			
	$N\cos\theta = mg$			
	$Nsin\theta = \frac{mv^2}{r}$			
	$tan\theta = \frac{v^2}{rg}$			
	$\frac{\mathrm{h}}{\mathrm{1.5}} = \frac{\mathrm{12} \times \mathrm{12}}{\mathrm{400} \times \mathrm{10}}$			
	$h = \frac{12 \times 12}{4000} \times \frac{3}{2} = \frac{5}{10}$	4 00		
	h = 0.054 m			

18. A particle is moving from origin with initial velocity $5\hat{i}$ m/s and constant acceleration $3\hat{i}+2\hat{j}$ m/s² When position of particle is 84 m, its velocity is $\sqrt{\alpha}$ m/s. Find out α :

Sol. $x = u_{x}t + \frac{1}{2}a_{x}t^{2}$ $84 = 5t + \frac{3}{2}t^{2}$ t = 6 sec. $\dot{v} = \dot{u} + \dot{a}t$ $\dot{v} = 5\hat{i} + (3\hat{i} + 2\hat{j}) 6$ $= 23\hat{i} + 12\hat{j}$ = 529 + 144 $= \sqrt{673} \text{ m/s}$ $\alpha = 673$

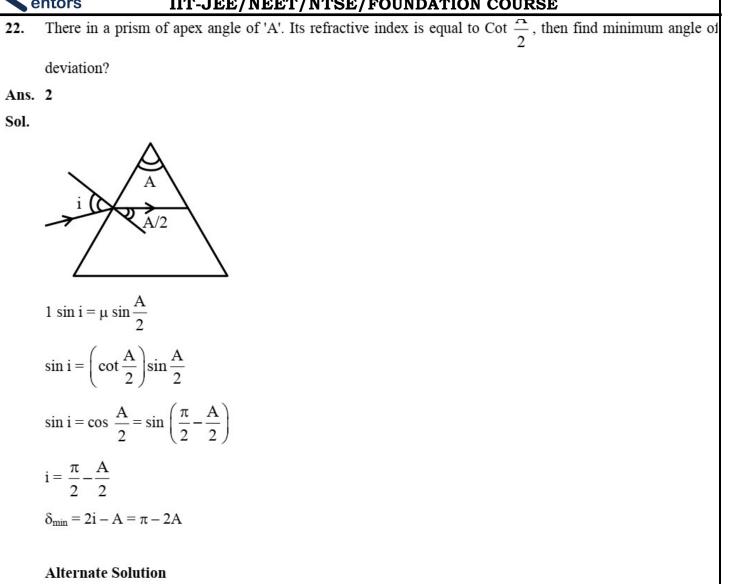
Cducation entors

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

19. Statement-1 : Angular momentum and Plank constant have same dimensions.

Statement-2 : Moment of force and linear momentum have same dimensions.

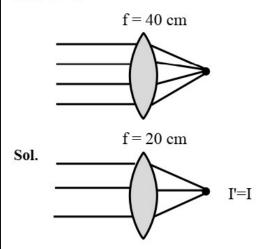
- (1) Both statements are true
- (2) Both statements are false
- (3) Statement 1 is true and 2^{nd} is false
- (4) Statement 2 is true and 1^{st} is false


Ans. (3)

- Sol. $\mathbf{L} = \frac{nh}{2\pi}$, $\mathbf{F} = \frac{dp}{dt}$ $[\mathbf{L}] = \mathbf{M}^{1}\mathbf{L}^{2}\mathbf{T}^{-1}$ $[\mathbf{h}] = \mathbf{M}\mathbf{L}^{2}\mathbf{T}^{-1}$ $[\tau] = \mathbf{M}^{1}\mathbf{L}^{2}\mathbf{T}^{-2}$
 - $[P] = M^{1}L^{1}T^{-1}$
- **20.** A proton is moving in gravity free space with constant velocity v and goes undeviated. What can be the possible conditions.
 - (A) E = 0, B = 0(B) $E = 0, B \neq 0$ (C) $E \neq 0, B = 0$ (D) $E \neq 0, B \neq 0$ (1) A, B, D (2) A, B, C (3) A, B, C, D (4) B, C, D (1)

Ans.

- 21. $S_1 \rightarrow$ Viscosity coefficient of gas is less than liquid.
 - $S_2 \rightarrow$ Surface tension decreases if insoluble impurities are added.
 - (1) S₁ is true, S₂ is true
 - (2) S₁ is false, S₂ is false
 - (3) S₁ is true, S₂ is false
 - (4) S₁ is false, S₂ is true
- Ans. (1)

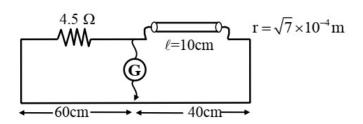

$$n = \frac{\sin \frac{A + \delta_{\min}}{2}}{\sin \frac{A}{2}}$$
$$\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{\sin \frac{A + \delta_{\min}}{2}}{\sin \frac{A}{2}}$$
$$\Rightarrow \delta_{\min} = \pi - 2A$$

23. A point charge q is placed at a centre of a charged ring of total charge Q. Find tension in the ring. Ans. $\frac{KQq}{2\pi R^2}$

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE Sol. $\vec{R}_{q} Q \qquad \vec{T}_{q} \vec{R}_{q}^{dq}$ $\vec{R}_{q}^{2} = 2T \sin\left(\frac{\theta}{2}\right) \qquad \theta \approx \text{small}$ $\frac{kqQ\theta}{2\pi R^{2}} = T\theta \qquad Also \ \frac{Q}{dq} = \frac{2\pi}{\theta}$ $T = \frac{KQq}{2\pi R^{2}}$

24. Light in incident on a convex lens of focal length 40 cm. And a metal plate is placed on focus of lens & photo current is measure to be I. Find new photocurrent if lens is replaced by another lens focal length of 20 cm & metal plate is kept on its focus?

Ans. I'=I



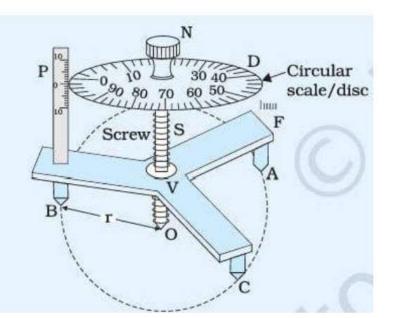
25. In meter bridge experiment there is a resistance in right slot of length 10 cm and radius of cross section is $\sqrt{7} \times 10^{-4}$ m. In left slot these is a resistance of 4.5 Ω . If balance length from left is 60 cm. If unknown resistivity is $x \times 10^{-7}$. Find 'x'.

Ans.

66

Sol.

 $\frac{60}{40} = \frac{4.5}{R} \qquad \Rightarrow \qquad R = 3\Omega$ $R = \frac{\rho \ell}{A}$ $3 = \rho \times \frac{1}{10 \times \pi \times 7 \times 10^{-8}} \Rightarrow \qquad \rho = 21\pi \times 10^{-7} = 21 \times \frac{20}{7} \times 10^{-7} = 66 \times 10^{-7} = x \times 10^{-7}$ x = 66


26. Spherometer can't be used for measurement of :

- (1) Radius of curvature of convex mirror
- (2) Radius of curvature of concave mirror
- (3) Thickness of capacitor plates
- (4) Specific rotation of liquid

Ans. (4)

ducation

Sol. Spherometer is used to measure radius of curvature of any spherical surface and any small thickness.

EducationEducation Mentors AcademyIIT-JEE/NEET/NTSE/FOUNDATION COURSE				
			CHEMISTRY	
1.	Which of the fol	lowing has maximur	m magnetic moment?	
	(1) $3d^3$	(2) $3d^6$	(3) $3d^7$	
Ans.	(2)			
2.	Mass of methane	e required to produce	e 22 g CO_2 upon combustion is	
Ans.	(8)			
Sol.	Moles of $CO_2 =$	$\frac{22}{44} = 0.5 \therefore n_{CH_4} = 0.5$	0.5 \therefore $m_{CH_4} = 8g$	
3.	Assertion : Boron has very high melting point (2453 K)			
	Reason : Boron	has strong crystalline	e lattice.	
Ans.	A-T; R-T;			
	Exp. \rightarrow Right			
4.	Sum of bond ord	ler of CO & NO^+ is :	:	
Ans.	(6)			
Sol.	$CO:3$; $NO^+:3$			
5.	How many of fo	llowing have +4 oxid	dation number of central atom:	
	BaSO ₄ , SOCl ₂ , S	SF ₄ , H ₂ SO ₃ , H ₂ S ₂ O ₇ ,	SO ₃	
Ans.	(3)			
Sol.	SOCl ₂ , SF ₄ , H ₂ S	O ₃		
6.	PbCrO ₄ + NaOH	I (hot excess) \longrightarrow ?		
	Product is :			
	(1) dianionic ; C	N = 4	(2) tetra-anionic ; $CN = 6$	
	(3) dianionic ; C	N = 6	(4) tetra-anionic; $CN = 4$	
Ans.	(4)			

Education Mentors Academy ucation entors **IIT-JEE/NEET/NTSE/FOUNDATION COURSE** 7. For negative deviation from Raoult's law : (2) BP decreases ; VP increases (1) BP increases ; VP increases (3) BP decreases ; VP decreases (4) BP increases ; VP decreases Ans. (4) $NaCl + H_2SO_4 + K_2Cr_2O_7 \longrightarrow Products$ 8. Above reaction gives red fumes (A) which on hydrolysis with aqueous NaOH gives yellow solution (B). Compounds (A) and (B) are : Ans. CrO₂Cl₂, Na₂CrO₄ Sol. $NaCl + H_2SO_4 + K_2Cr_2O_7 \rightarrow CrO_2Cl_2 + Na_2SO_4 + K_2SO_4 + H_2O_2Cl_2 + Na_2SO_4 + K_2SO_4 + K_2SO_4 + H_2O_2Cl_2 + Na_2SO_4 + K_2SO_4 + K_2SO_4$ (A) $CrO_2Cl_2 + NaOH (aq.) \rightarrow Na_2CrO_4 + NaCl + H_2O$ (B) 9. Order of spin only magnetic moment for $[FeF_6]^{-3}$ $[V(H_2O)_6]^{+2}$ $[Fe(H_2O)_6]^{+2}$ (P) (Q) (R) (1) P > R > Q (2) P > Q > R (3) R > Q > P (4) Q > P > RAns. (1) $P: [FeF_6]^{-3} \Rightarrow 3d^5 (WFL) \Rightarrow n = 5; \mu = \sqrt{35}$ Sol. $O: [V(H_2O)_6]^{+2} \Rightarrow 3d^3 \Rightarrow n = 3; \mu = \sqrt{15}$ $R: [Fe(H_2O)_6]^{+2} \Rightarrow 3d^6 (WFL) \Rightarrow n = 4; \ \mu = \sqrt{24}$ 10. Electronic configuration of Nd(Z = 60) is : $[Xe] 4f^4 6s^2$ Ans. Statement-1: (NH₄)₂CO₃ is basic. 11. Statement-2: Acidic nature of salt of WA & WB is dependent on K_a of WA & K_b of WB. $(S_1 \rightarrow T; S_2 \rightarrow T)$ Ans.

ducation

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

12. Number of electrons present in all the compound filled subshell having n = 4 and s = +1/2.

Ans. (16)

13. Consider following data :

 $2\mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_2(\mathrm{g}) + \mathrm{I}_2(\mathrm{g})$

	Experiment-1	Experiment-2	Experiment-3
HI(mole/litre)	0.005	0.01	0.02
Rate (mol $L^{-1} s^{-1}$)	7.5×10^{-4}	$3 imes 10^{-3}$	$1.2 imes 10^{-2}$

Find order of reaction.

Ans. (2)

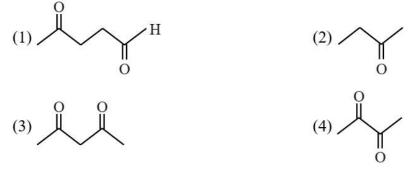
Sol. Rate = $K[HI]^x x = order$

$$\frac{(\text{Rate})_2}{(\text{Rate})_1} = \left(\frac{[\text{HI}]_1}{[\text{HI}]_2}\right)^x$$
$$\frac{3 \times 10^{-3}}{7.5 \times 10^{-4}} = \left(\frac{0.01}{0.005}\right)^x$$
$$4 = 2^x$$
$$\therefore x = 2$$

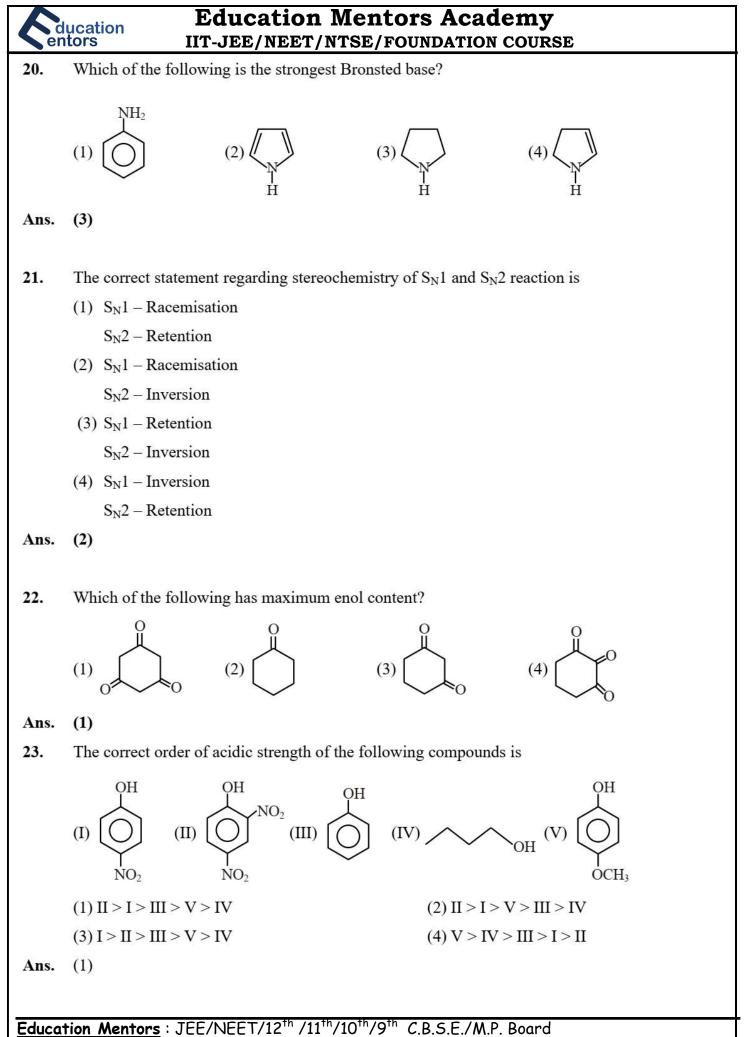
14. If 3 moles of an ideal gas at 300 K expands isothermally from 30 dm³ to 45 dm³ against constant pressure of 80 K pascal then the amount of heat transfer is _____ joule.

Ans. (1200)

Sol. Process \Rightarrow Isothermal, irreversible $\Rightarrow \Delta E = 0$ $P_{ext} = Constant = 80 \text{ kPa}$ Expansion $V_1 = 30 \text{ dm}^3$ $V_2 = 45 \text{ dm}^3$ $\Delta E = 0 = q + W$ q = -W


$$q = -[-P(V_2 - V_1)]$$

$$q = 80 \text{ kPa} [45 \text{ dm}^3 - 30 \text{ dm}^3]$$
$$= 80 \times 10^3 \text{ Pa} \times 15 \times 10^{-3} \text{ m}^3$$


den	uucation	n Mentors Ac	•
15.	The mass of silver (Ag = 108 g	m/mole) displaces by a q	uantity of electricity which displaces
	5600 ml of O_2 at STP will be :		
Ans.	(108)		
Sol.	mole \times valency factor = mole \times va	alency factor	
	$\frac{W}{108} \times 1 = \frac{5600}{22400} \times 4$		
	W = 108 g		
16.	Which of the following has +4 oxi	idation state ?	
	(1) $H_2S_2O_7$ (2) H_2SO_3		
Ans.	(2)		
Sol.	$H_2S_2O_3$		
	+2 + x - 6 = 0		
	x = +4		
17.	Which halogen does not shows va	riable oxidation state ?	
	(1) F_2 (2) Cl_2	$(3) \operatorname{Br}_2$	(4) I_2
Ans.	(1)		
Sol.	F : Only (-1) in compounds		
	(∵ is not EN)		
18.	Statement-1: 4f & 5f series are w	vritten separately in perio	dic table in order to preserve principle
	of classification.		
	Statement-2: s-Block elements ca	an be found on earth in pu	re form.
Ans	First statement is correct and seco	nd is not correct	

Ans. First statement is correct and second is not correct.

19. Which of the following compound is most acidic?

Ans. (3)

<u>Address:</u>Near BSNL Office, Ajaygardh Road Panna(M.P.) <u>Contact</u>:07732-250271(0); 9713095710(M)

Cer	lucation ntors		n Mentors Acac T/NTSE/FOUNDATION	•	
24.	The correct IUPAC name of following compound is				
	\succ]			
	\sim	\sim			
		thyl-3-ethyl cyclohex			
	173) 	,1-dimethyl cyclohex			
		,3-dimethyl cyclohex			
	(4) 3,3-Dime	thyl-1-ethyl cyclohex	ane		
Ans.	(2)				
25.		is classified in			
	(1) Benzenoid		(2) Alicyclic		
	(3) Benzenoid	d non aromatic	(4) Acyclic		
Ans.	(2)				
26.	Which of the	following is polar so	lvent		
	$(1) \operatorname{CCl}_4$	(2) $CHCl_3$	$(3) CH_2 = CH_2$	$(4) \operatorname{CO}_2$	
Ans.	(2)				
27.	When nucleotide forms dimer the linkage present between is(1) Disulphide linkage(2) Glycosidic linkage				
			(2) Glycosidic linkage		
	-	iester linkage	(4) Peptide linkage		
Ans.	(3)				
Educa	tion Mentors	: JEE/NEET/12 th /	′11 th /10 th /9 th C.B.S.E./M.I	P. Board	

<u>Education Mentors</u>: JEE/INEE 1/12.../11.../10.../9... C.B.S.E./M.P. Board <u>Address:</u>Near BSNL Office, Ajaygardh Road Panna(M.P.) <u>Contact</u>:07732-250271(O); 9713095710(M)

Cer	lucation ntors		Mentors Aca NTSE/FOUNDATION	•	
		MA	ATHEMATICS		
1.	Find number of common terms in the two given series				
	4, 9, 14, 19	up to 25 terms and			
	3, 9, 15, 21ı	up to 37 terms			
	(1) 4	(2) 7	(3) 5	(4) 3	
Ans.	(1)				
Sol.	4, 9, 14, 19,	$\dots 124 \rightarrow d_1 = 5$			
	3, 9, 15, 21	$\dots 219 \rightarrow d_2 = 6$			
	1 st common term	n = 9 and common dif	ference of common te	srms = 30	
	Common terms	are 9, 39, 69, 99			
	4 common terms	5			
2.	Let $8 = 3 + \frac{3+1}{4}$	$\frac{p}{4} + \frac{3+2p}{4^2} + \dots \infty$	then p is		
	(1) 9	(2) $\frac{5}{4}$	(3) 3	(4) 1	
Ans.	(1)				
Sol.	$8 = 3 + \frac{3+p}{4} + $	$\frac{3+2p}{4^2} + \dots \dots (i)$			
	multiply both sid	les by $\frac{1}{4}$, we get			
	$2 = \frac{3}{4} + \frac{3+p}{4^2} + \frac{3}{4^2} + $	(ii)			
	Equation (i) – ec	uation (ii)			
	$\Rightarrow 6 = 3 + \frac{p}{4} + $	$\frac{p}{4^2}$ +			
	$\Rightarrow 3 = \frac{p}{4\left(1 - \frac{1}{4}\right)}$	$\Rightarrow p = 9$			
3.	For $\frac{x^2}{25} + \frac{y^2}{16} = 1$, find the length of ch	ord whose mid point i	s P $\left(1,\frac{2}{5}\right)$	
	(1) $\frac{\sqrt{1681}}{5}$	(2) $\frac{\sqrt{1481}}{5}$	(3) $\frac{\sqrt{1781}}{5}$	(4) $\frac{\sqrt{1691}}{5}$	
Ans.	(4)				

	III-SEE/ NEET/ NISE/ FOUNDATION COURSE
Sol.	By $T = S_1$
	$\Rightarrow \frac{x}{25} + \frac{y}{16} = \frac{1}{25} + \frac{4}{25} \cdot \frac{1}{16}$
	$\Rightarrow \frac{x}{25} + \frac{y}{40} = \frac{4+1}{100}$
	$\Rightarrow \frac{x}{25} + \frac{y}{40} = \frac{1}{20}$
	$\Rightarrow 8x + 5y = 10$
	$\Rightarrow \frac{x^2}{25} + \left(\frac{10 - 8x}{5}\right)^2 \frac{1}{16} = 1$
	$\Rightarrow \frac{x^2}{25} + \frac{4}{25} \left(\frac{5-4x}{16}\right)^2 = 1$
	$\Rightarrow x^2 + \frac{\left(5 - 4x\right)^2}{4} = 25$
	$\Rightarrow 4x^2 + (5 - 4x)^2 = 100$
	$\Rightarrow 20x^2 - 8x - 15 = 0$
	$x_1 + x_2 = 2$
	$\mathbf{x}_1 \mathbf{x}_2 = \frac{-15}{4}$
	length of chord = $ \mathbf{x}_1 - \mathbf{x}_2 \sqrt{1 + \mathbf{m}^2}$
	$=\frac{\sqrt{1691}}{\sqrt{1691}}$
	5
4.	If $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$, then find f'(10).
Ans.	(202)
Sol.	$f'(x) = 3x^2 + 2xf'(1) + f'(2)$
	f''(x) = 6x + 2f'(1)
	f'''(3) = 6
	f'(1) = -5 f''(2) = 2
	f'(2) = 2 $\Rightarrow f'(10) = 300 + 20(-5) + 2$
	$\Rightarrow 1(10) - 300 + 20(-3) + 2$ = 202
5.	Let $\int_{0}^{1} \frac{dx}{\sqrt{x+3} + \sqrt{x+1}} = A + B\sqrt{2} + C\sqrt{3}$ then the value of $2A + 3B + C$ is
	(1) 3 (2) 4 (3) 5 (4) 6
Ans.	(1)
i —	

ducation

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

Sol. On rationalising $\int_{-\infty}^{\infty} \frac{(\sqrt{x+3}-\sqrt{x+1})}{2} dx$ $=\frac{2}{32}\left\{(x+3)^{3/2}-(x+1)^{3/2}\right\}_{0}^{1}$ $=\frac{1}{3}\{8-3\sqrt{3}-(2\sqrt{2}-1)\}$ $=\frac{1}{2}\{9-3\sqrt{3}-2\sqrt{2}\}$ $=\left(3-\sqrt{3}-\frac{2\sqrt{2}}{3}\right): A=3, B=-\frac{2}{3}, C=-1$ $\therefore 2A + 3B + C = 6 - 2 - 1 = 3$ If |z - i| = |z - 1| = |z + i|, $z \in C$, then the numbers of z satisfying the equation are 6. (1)0(3)2(2)1(4)4(2) Ans. Sol. z is equidistant from 1, i, & -ionly z = 0 is possible : number of z equal to 1 If sum of coefficients in $(1 - 3x + 10x^2)^n$ and $(1 + x^2)^n$ is A and B respectively then 7. (1) $A^3 = B$ (2) $A = B^3$ (3) A = 2B(4) A = BAns. (2) $A = 8^n$ $B = 2^{n}$ Sol. (B) $\therefore A = B^3$ Let a_1, a_2, \ldots, a_{10} are 10 observations such that $\sum_{i=1}^{10} a_i = 50$ and $\sum_{i=1}^{10} a_i \cdot a_j = 1100$, then their 8. standard deviation will be (2) $\sqrt{30}$ $(3) \sqrt{15}$ $(4) \sqrt{10}$ $(1)\sqrt{5}$ Ans. (1) $(a_1 + a_2 + \dots + a_{10})^2 = 50^2$ Sol. $\Rightarrow \sum a_1^2 + 2 \sum_{i \neq i} a_i a_j = 2500$ $\Rightarrow \sum a_1^2 = 300$ $\sigma^2 = \frac{\sum a_i^2}{10} - \left(\frac{\sum a_i}{10}\right)^2$ $\Rightarrow \sigma^2 = 5 \Rightarrow S.D = \sqrt{5}$

Education Mentors Academy ducation **IIT-JEE/NEET/NTSE/FOUNDATION COURSE** $\cos x - \sin x = 0$ If $f(x) = |\sin x \cos x|$ 0 then 9. 0 0 1 **Statement-1** : f(-x) is inverse of f(x)**Statement-2** : f(x + y) = f(x)f(y)(1) Both are true (2) Both are false (3) Only statement 1 is true (4) Only statement 2 is true (1) Ans. $f(x)f(y) = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0\\ \sin y & \cos y & 0\\ 0 & 0 & 1 \end{bmatrix}$ Sol. $\left[\cos(x+y) - \sin(x+y) 0\right]$ $= \begin{vmatrix} \sin(x+y) & \cos(x-y) & 0 \\ 0 & 0 & 1 \end{vmatrix}$ = f(x + y) \therefore f(x) f(-x) = f(0) If $a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}$ and $b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}$ find $a \cdot b^3$ 10. (1) 16(2)32(3) - 16(4) 48Ans. (2) $a = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left\lceil \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right\rceil}$ Sol. $= \lim_{x \to 0} \frac{x^4}{x^4 \left[\sqrt{1 + \sqrt{1 + x^4} + \sqrt{2}} \right] \left[\sqrt{1 + x^4} + 1 \right]}$ $=\frac{1}{2\sqrt{2}\times 2}=\frac{1}{4\sqrt{2}}$ $b = \lim_{x \to 0} \frac{\sin^2 x}{(1 - \cos x)} \left(\sqrt{2} + \sqrt{1 + \cos x}\right)$ $= 2 \times \left(\sqrt{2} + \sqrt{2}\right) = 4\sqrt{2}$ $\therefore ab^3 = \left(4\sqrt{2}\right)^2 = 32$

ent	ucation	ducation N -JEE/NEET/N		•
11.	If the minimum dist	tance of centre of th	he circle $x^2 + y^2 - 4$	4x - 16y + 64 = 0 from any point on the
	parabola $y^2 = 4x$ is a	d, find d^2		
Ans.	(20)			
Sol.	Normal to parabola	is $y = mx - 2m - m$	1 ³	
	centre $(2, 8) \rightarrow 8 =$	$2m - 2m - m^3$		
	\Rightarrow m = -2			
	\therefore p is (m ² , -2m) =	(4, 4)		
	$\Rightarrow d^2 = 4 + 16 = 20$			
12.	If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, \vec{b}	$=3(\hat{i}-\hat{j}+\hat{k}), \ \vec{a}\times\vec{c}$	$= \vec{b} \& \vec{a} . \vec{c} = 3$ find	$\vec{a}.(\vec{c}\times\vec{b}-\vec{b}-\vec{c})$
	(1) 24	(2) –24	(3) 18	(4) 15
Ans.	(1)			
Sol.	$\begin{bmatrix} \vec{a} \ \vec{c} \ \vec{b} \end{bmatrix} = (\vec{a} \times \vec{c}) \cdot \vec{b}$	$= \vec{b} ^2=27$		
	\therefore we need = $27 - 0$	-3 = 24		
13.	Consider the line L	: 4x + 5y = 20. Let	et two other lines an	the L_1 and L_2 which trisect the line L and
	pass through origin,	, then tangent of ang	gle between lines L	$_1$ and L_2 is
	(1) $\frac{20}{41}$	(2) $\frac{30}{41}$	$(3) \frac{40}{41}$	(4) $\frac{10}{41}$
Ans.	(2)			
Sol.	Let line L intersect	the lines L_1 and L_2 :	at P and Q	
	$P\left(\frac{10}{3},\frac{4}{3}\right), Q\left(\frac{5}{3},\frac{8}{3}\right)$			
	$\therefore m_{OA} = \frac{2}{5}$			
	$m_{OQ} = \frac{8}{5}$			
	$\tan\theta = \frac{\frac{8}{5} - \frac{2}{5}}{1 + \frac{16}{25}}$			
	$=\left(\frac{6}{5}\times\frac{25}{41}\right)$			
	$=\frac{30}{41}$			

ducation

er	itors I	IT-JEE/NEET/NTS	E/FOUNDATION	COURSE
14.	If ${}^{n-1}C_r = (k^2 - 8)$	${}^{n}C_{r+1}$, then the range of	'k' is	
	$(1) k \in \left(2\sqrt{2}, 3\right]$	$(2) k \in \left(2\sqrt{2}, 3\right)$	$(3)k\in[2,3)$	$(4) k \in \left(2\sqrt{2}, 8\right)$
Ans.	(1)			
Sol.	$^{n-1}C_r = (k^2 - 8) \frac{1}{r}$	$\frac{1}{1}$. $^{n-1}C_r$		
	$\Rightarrow k^2 - 8 = \frac{r+1}{n}$			
	here $r \in [0, n-1]$			
	$\Rightarrow r+1 \in [1,n]$			
	$\Rightarrow k^2 - 8 \in \left[\frac{1}{n}, 1\right]$]		
	$\Rightarrow k^2 \in \left[8 + \frac{1}{n}, 9\right]$			
	\Rightarrow k $\in \left(2\sqrt{2}, 3\right]$			
15.	If $\alpha x + \beta y + 9 \ln \beta$	$ 2x + 3y - 8\lambda = x + C $ is	the solution of (2x	(+3y-2)dx + (4x+6y-7)dy = 0
	then $\alpha + \beta + \gamma =$			
	(1) 18	(2) 19	(3) 20	(4) 21
Ans.	(1)			
Sol.	Let $2x + 3y = t$			
	$\Rightarrow 2 + 3 \frac{dy}{dx} = \frac{dt}{dx}$			
	Now $(t-2) + (2t-1)$	$-7)\left(\frac{\mathrm{dt}}{\mathrm{dx}}-2\right)\times\frac{1}{3}=0$		
	$\Rightarrow -\frac{(3t-6)}{2t-7} = \frac{dt}{dx}$	-2		
	$\Rightarrow \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{t-8}{2t-7}$			
	$\Rightarrow \int \frac{2t-7}{t-8} dt = \int dt$	łx		
	$\Rightarrow \int 2 + \frac{9}{t-8} dt =$	dx		
	$\Rightarrow 2t + 9ln t - 8 $	$= \mathbf{x} + \mathbf{C}$		
	$\Rightarrow 2(2x+3y)+9$	n 2x + 3y - 8 = x + C		
	$\alpha = 4, \beta = 6, \gamma = 8$	1		
			th wath an a s s who	

entors

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

16.	$f: N - \{1\} \rightarrow N$ and $f(n) =$ highest prime factor of 'n', t	then f is
	(1) one-one, onto (2) many-	
	(3) many-one, into (4) one-on	ne, into
Ans.	. (3)	
Sol.	'4' is not image of any element \Rightarrow into	
	$f(10) = 5 = f(15) \Rightarrow$ many-one	
17.	If $P(X)$ represent the probability of getting a '6' in the X	ζ^{th} roll of a die for the first time. Also
	$\mathbf{a} = \mathbf{P}(\mathbf{X} = 3)$	
	$\mathbf{b} = \mathbf{P}(\mathbf{X} \ge 3)$	
	$c = P\left(\frac{X \ge 6}{x > 3}\right)$, then $\frac{b+c}{a} = ?$	
Ans.	. (12)	
Sol.	$P(X=3) = \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} = a$	
	$P(X \ge 3) = \left(\frac{5}{6}\right)^2 = b$	
	$P\left(\frac{X \ge 6}{X > 3}\right) = \left(\frac{5}{6}\right)^2 = c$	
	$\therefore \frac{b+c}{a} = \frac{2\left(\frac{5}{6}\right)^2}{\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}} = 12$	
18.	If the angle between two vectors $\vec{a} = \alpha \hat{i} - 4\hat{j} - \hat{k}$ and	$\vec{b} = \alpha \hat{i} + \alpha \hat{j} + 4 \hat{k}$ is acute then find least
	positive integral value of α .	
	(1) 4 (2) 5 (3) 6	(4) 7
Ans.	. (2)	
Sol.	$\vec{a} \cdot \vec{b} > 0$	
	$\Rightarrow \alpha^2 - 4\alpha - 4 > 0$	
	$\alpha < (2 - 2\sqrt{2}) \text{ or } \alpha > (2 + 2\sqrt{2})$	
19.	If $S = \{1, 2, \dots, 10\}$ and $M = P(S)$,	
	If ARB such that $A \cap B \neq \phi$ where $A \in M$, $B \in M$	
	Then	
	(1) R is reflexive and symmetric (2) Only s	symmetric
	(3) Only reflexive (4) Symm	etric and transitive
Ans.	. (2)	
Educat	ation Mentors : JEE/NEET/12 th /11 th /10 th /9 th C.B.	S.E./M.P. Board

Address: Near BSNL Office, Ajaygardh Road Panna(M.P.) Contact: 07732-250271(0); 9713095710(M)

	LocationEducation Mentors AcademyIIT-JEE/NEET/NTSE/FOUNDATION COURSE
Sol.	$\phi \cap \phi = \phi \qquad \Rightarrow (\phi, \phi) \notin R \qquad \Rightarrow \text{not reflexive.}$
	If $A \cap B \neq \phi$ $\Rightarrow B \cap A \neq \phi \Rightarrow$ Symmetric
	If $A \cap B \neq \phi$ and $B \cap C \neq \phi \Rightarrow A \cap C = \phi$
	for example $A = \{1, 2\}$
	$B = \{2, 3\}$
	$C = \{3,4\}$
20.	If four points (0, 0), (1, 0), (0, 1), (2k, 3k) are concyclic, then k is
	(1) $\frac{4}{13}$ (2) $\frac{5}{13}$ (3) $\frac{7}{13}$ (4) $\frac{9}{13}$
Ans.	(2)
Sol.	Equation of circle is
	x(x-1) + y(y-1) = 0
	$x^2 + y^2 - x - y = 0$
	$B(2k, 3k) \Rightarrow 4k^2 + 9k^2 - 2k - 3k = 0$
	$\Rightarrow 4k + 9k - 2k - 5k = 0$ $\Rightarrow 13k^2 = 5k$
	\Rightarrow k = 0, $\frac{5}{13}$
	$\therefore k = \frac{5}{13}$
	13
21.	If $f(x)$ is differentiable function satisfying $f(x) - f(y) \ge \log \frac{x}{y} + x - y$, then find $\sum_{N=1}^{20} f'\left(\frac{1}{N^2}\right)$
Ans.	(2890)
Sol.	Let $x > y$ Let $x < y$
	$\lim_{y \to x} \frac{f(x) - f(y)}{x - y} \ge \frac{\log x - \log y}{x - y} + 1 \qquad \qquad \frac{f(x) - f(y)}{x - y} \le \frac{\log x - \log y}{x - y} + 1$
	$f'(x^-) \ge \frac{1}{x} + 1$ $f'(x^+) \le \frac{1}{x} + 1$
	\Rightarrow f'(x ⁻) = f'(x ⁺) as f(x) is differentiable function
	$f'(x) = \frac{1}{x} + 1$
	$\mathbf{f}'\left(\frac{1}{\mathbf{N}^2}\right) = \mathbf{N}^2 + 1$
	$\sum_{N=1}^{20} f'\left(\frac{1}{N^2}\right) = \sum (N^2 + 1) = \frac{20 \times 21 \times 41}{6} + 20 = 2890$

Education Mentors Academy ducation entors **IIT-JEE/NEET/NTSE/FOUNDATION COURSE** Let $\frac{dx}{dt} + ax = 0$ and $\frac{dy}{dt} + by = 0$ where y(0) = 1, x(0) = 2, and x(t) = y(t), then t is 22. (1) $\frac{\ln 3}{a-b}$ (2) $\frac{\ln 2}{b-a}$ (3) $\frac{\ln 2}{a-b}$ (4) $\frac{\ln 3}{b-a}$ Ans. (3) $\frac{\mathrm{dx}}{\mathrm{dt}} + \mathrm{ax} = 0$ Sol. $\Rightarrow \ln x = -at + c$ $x(0) = 2 \implies c = \ln 2$ $\therefore x = 2e^{-at}$ $\frac{dy}{dt} + by = 0 \implies y = e^{-bt}$ $\mathbf{x}(t) = \mathbf{g}(t)$ $2e^{-at} = e^{-bt}$ $\Rightarrow t = \frac{\ln 2}{a - b}$ If H(a, b) is the orthocentre of $\triangle ABC$ where A(1, 2), B(2,3) & C(3, 1), then find $\frac{36I_1}{I_2}$ if 23. $I_1 = \int_{-\infty}^{\infty} x \sin(4x - x^2) dx$ and $I_2 = \int_{-\infty}^{\infty} \sin(4x - x^2) dx$ (72)Ans. \triangle ABC is isosceles Sol. \Rightarrow H lies on angle bisector passing through (3, 1) which is x + y = 4 $\therefore a+b=4$ Now apply (a + b - x) in I₁ $2I_1 = \int^b 4\sin(4x - x^2) \, dx$ $\Rightarrow 2I_1 = 4I_2$ $\Rightarrow \frac{I_1}{I_2} = 2$ $\therefore \frac{36I_1}{L} = 72$

Education Mentors Academy ducation entors **IIT-JEE/NEET/NTSE/FOUNDATION COURSE** , x > 3 $f(x) = \begin{cases} -\frac{a(x^2 - 7x + 12)}{b |x^2 - 7x + 12|} & , x < 3. \text{ Find number of ordered pairs } (a, b) \text{ so that } f(x) \text{ is continuous} \\ b & , x = 3 \end{cases}$ 24. at x = 3Ans. (1) LHL = RHL = f(3)Sol. $-\frac{a}{b}=2^{1}=b$ \Rightarrow b = 2 and a = -4 \Rightarrow (a,b) = (-4,2) Let $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 2 & 0 \end{bmatrix}$, $B = [B_1 B_2 B_3]$ where B_1 , B_2 , B_3 are column matrices such that 25. $\mathbf{AB}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{AB}_{2} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \mathbf{AB}_{3} = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$ α = sum of diagonal elements of B $\beta = |\mathbf{B}|$, then find $|\alpha^3 + \beta^3|$ Ans. (1.125)**Sol.** $A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 1 & -2 & 0 \end{bmatrix}$ $\mathbf{B}_1 = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}, \ \mathbf{B}_2 = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{2} \end{bmatrix}, \ \mathbf{B}_3 = \begin{bmatrix} \mathbf{2} \\ -\frac{\mathbf{5}} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix}$ $Tr(B) = -\frac{1}{2}$ |B| = -1 $\therefore a = -\frac{1}{2}, b = -1$ $|\alpha^3 + \beta^3| = \frac{9}{8} = 1.125$

ducation

Education Mentors Academy IIT-JEE/NEET/NTSE/FOUNDATION COURSE

If cos(2x) - a sinx = 2a - 7 has a solution for $a \in [p, q]$ and $r = tan9^{\circ} + tan63^{\circ} + tan81^{\circ} + tan27^{\circ}$, 26. then p.q. r = ?(1) $40\sqrt{5}$ (2) $32\sqrt{5}$ (3) $30\sqrt{5}$ (4) $48\sqrt{5}$ Ans. (4) $2(\sin^2 x - 4) + a(\sin x + 2) = 0$ Sol. $2(\sin x - 2) + a = 0$ $\Rightarrow a = 4 - 2 \sin x$ $a \in [2, 6]$ Also, $r = \left(\tan 9^\circ + \frac{1}{\tan 9^\circ}\right) + \left(\tan 27^\circ + 1\frac{1}{\tan 27^\circ}\right)$ $=\frac{2}{\sin 18^\circ} + \frac{2}{\sin 54^\circ}$ $=\frac{2\times 4}{\sqrt{5}-1}+\frac{2\times 4}{\sqrt{5}+1}$ $=\frac{8\times 2\sqrt{5}}{4}=4\sqrt{5}$ \therefore pqr = $48\sqrt{5}$ LUIS